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Packing fractions and maximum angles of stability of granular materials
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In two-dimensional rotating drum experiments, we find two separate influences of the packing fraction of a
granular heap on its stability. For a fixed grain shape, the stability increases with packing fraction. However, in
determining the relative stability of different grain shapes, those with the lowest average packing fractions tend
to form the most stable heaps. We also show that only the configuration close to the surface of the pile figures

prominently.
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I. INTRODUCTION

Granular materials are studied in materials science, geol-
ogy, physics, and engineering [1]. Their unusual dynamical
behavior has attracted much recent attention [2—4], and even
the more staid static issues generate steady interest [5,6].
One question is how much of granular behavior can be de-
rived from purely geometrical considerations. In practical
materials, particle deformation and surface effects such as
cohesion and agglomeration also play major roles, masking
the influence of geometry. Furthermore, studying grain shape
is a difficult endeavor. The experimental challenge is in cre-
ating uniform but nonspherical shapes. Recent efforts include
two-dimensional studies of regular pentagons [7,8] and a
three-dimensional experiment using M&M’s [9]. On the the-
oretical side, the problem is how to treat the interaction of
grains as they move past each other.

Work linking geometry to behaviors other than packing is
yet more scarce. One rare attempt involves predicting ava-
lanches in a granular pile [10], a question at the border be-
tween statics and dynamics. Granular piles, such as sand-
piles, exhibit characteristic angles for their free surfaces. One
is the repose angle, below which the pile is stable. If the
surface becomes steeper than the repose angle—for example,
if the pile is tilted or if new grains are added—then the heap
may undergo an avalanche in which grains all along the
slope move, resulting in a lower angle. In practice, ava-
lanches do not begin until the angle exceeds what is known
as the maximum angle of stability, which is typically several
degrees larger than the repose angle. Once started, an ava-
lanche continues until the pile surface is again less steep than
the repose angle. Albert et al. [10] derive a maximum angle
of stability from local geometry, beginning with a regular
tetrahedron of spheres. In addition to safety issues, under-
standing avalanches is important in fields such as geology
and soil mechanics, where granular matter can flow along
inclined surfaces.

Both theoretical and experimental work relate the packing
fraction of a heap to its stability, for the special case of
spherical grains [11-13]. The experiments involve packing
spheres under pressure to achieve different initial packing
fractions, then tilting the heap and noting the angle of the
first avalanche. As the spheres are packed more tightly, the
maximum angle of stability increases. In both these measure-
ments, the packing fraction is known only for the initial,
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artificially constructed arrangement. They do not test
whether the packing fraction also affects stability in the con-
figurations that actually occur after an avalanche. One set of
these experiments [ 11] uses not only smooth spheres but also
“rough” spheres and angular grains. The two very different
nonspherical shapes sustain similar maximum angles, higher
than that of smooth spheres.

Here we revisit the role of density, extending our study to
configurations that occur naturally as a result of prior ava-
lanches and to nonspherical grains. We work in two dimen-
sions, which makes visualizing an entire configuration much
easier than for a three-dimensional heap. Our grains are com-
posed of spherical ball bearings, welded together in clusters
of up to nine balls. The balls in each cluster are part of a
two-dimensional triangular lattice. Working with sphere clus-
ters has various advantages. The maximum possible density
is always that of a triangular lattice of the component
spheres. Spheres minimize friction and blocking effects as
the shapes move past each other. Finally, our system lends
itself to comparison with computer experiments, since
checking for overlaps, a challenging part of typical simula-
tions, is trivial for sphere clusters.

We find that the packing fraction indicates pile stability
for both spherical and nonspherical shapes, but with a twist.
When comparing piles composed of different grains, low av-
erage packing fraction indicates stability. After presenting
our experimental results, we offer an explanation for this
behavior and other observations about the influence of grain
shape.

II. PROCEDURE

As described elsewhere [14], we weld together
é—in.—diameter carbon steel ball bearings to make dimers;
trimers (three balls in a straight line); triangles of three or six
balls; diamonds of four, six, or nine balls; trapezoids of five
or seven balls; and hexagons of seven balls. The left column
of Table I illustrates these shapes.

Our tumbler, shown schematically in Fig. 1, is a sheet of
aluminum, é-in.-thick with a circular hole 14 in. in diameter
cut from its center. The aluminum is sandwiched between
two %-in.-thick sheets of Plexiglas, which constrain the balls
to move in a single layer. The plane of the tumbler is vertical.
A central axle attaches the tumbler to a stepper motor which
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TABLE 1. Average maximum angle of stability (6,,), repose
angle (6,), and average packing fraction immediately before an ava-
lanche (p;) for 11 shapes in a container with irregular boundary.
Standard errors are also given. Shapes are ordered by increasing 6,

b 0(0m) 6, o(0r) pi
« 1338 07 263 06 0.8204
& 1395 04 293 05 0.7764
& 412 05 313 03 0.8058
o |420 06 329 05 08238
e (438 1.0 345 08 0.7974
& (449 08 336 07 07718
%1487 13 350 1.0 0.7097
& |491 1.0 382 09 0.7696
0 |506 1.1 387 07 0.7609
S1509 15 366 09 07627
s {518 1.0 378 09 07573

controls the rotation rate. For all measurements here the ro-
tation rate is about 500 uHz, or one full turn in about
30 min. We use this slow speed so that the rotation of the
container itself during an avalanche remains negligible, and
the avalanches are discrete events. To prevent the balls from
sliding along the wall of the container during rotation, a thin
strip of rubber is glued to the inner edge of the aluminum. In
some measurements, as described below, an irregular bound-
ary was created by attaching aluminum triangles along the
edge of the hole.

For each shape we use a total mass of 365.6+0.3 g, so
that the grains fill a similar portion of the tumbler. Since the
grains are initially dropped individually onto a growing heap,
the resulting configurations may differ from those reached
after avalanches in the tumbler. In this work we investigate

FIG. 1.
grains, just after an avalanche. Rotation is clockwise within the
plane of the container. The triangles transform the container bound-
ary from a circle to an irregular shape.

Tumbler with two-dimensional heap of hexagonal
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FIG. 2. (Color online) Average angle for avalanche onset for
eight different shapes. Solid (black): container with circular bound-
ary. Striped (red): container with irregular boundary. The shapes
used are indicated along the horizontal axis, arranged in order of
size.

the class of configurations that can be obtained by successive
avalanches. Hence, to eliminate the effects of the grain load-
ing, we rotate the tumbler for at least 30 min before making
any measurements. We then rotate the tumbler for an addi-
tional 30 min, which generally yields 20-30 discrete ava-
lanches and record this rotation with a digital video camera.
Afterwards the avalanches are identified by eye, and the
video frames immediately before and after each avalanche
are uploaded to a computer.

To simplify the image processing, we use a solid red
background inside the tumbler and solid white around the
outside. These colors allow a computer program to identify
easily the region occupied by the heap. Since we know both
the total mass of the grains and the mass per grain, we can
convert the area of the heap to a packing fraction. We also fit
a line to the free surface of the heap and use it to define the
angle from horizontal of the surface. In this way we extract
the angle and packing fraction for each image.

On removing the shapes from the tumbler after a mea-
surement, we sort and count any broken grains. The maxi-
mum angle of stability is sensitive to broken shapes; so if
over 10% of the original pieces break during a measurement,
we discard the data and run that shape again. In most cases
breakage is less than 3% of the original shapes. Concern
about broken pieces figures in our 30-min observation time.
Although most of the breakage occurs upon loading the
shapes into the tumbler, we cannot assess it until after col-
lecting all the data and removing the grains. With a longer
data collection time the breakage does increase slightly.
More importantly, we run the risk of having to discard more
data if we do find many broken pieces.

III. RESULTS AND DISCUSSION

The solid bars of Fig. 2 show the average angle just be-
fore an avalanche for several different shapes. Standard er-
rors are typically 1° and never more than 1.5°, so the varia-
tions among shapes are significant. Two shapes, diamonds
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FIG. 3. Packing fraction and critical angle for the individual
avalanches of the small triangle shapes (three balls). The correlation
coefficient is 0.626.

and hexagons, form significantly more stable heaps than the
other shapes.

These angles are very different from the results of our
previous work in a rectangular container, which allows a
single-crystalline region [15]. To test that boundary effects
do not dominate the variations we find among shapes, we
inserted 16 triangles in an irregular pattern along the surface
of the circle and repeated the measurements. The results,
shown as striped bars in Fig. 2, are qualitatively the same.
Diamonds and hexagons remain much more stable than the
other shapes.

The quantitative differences between the containers could
be an effect of the boundary surface. Another contribution
may come from small differences in the numbers of broken
shapes in the two sets of measurements.

In the irregular container, we extended the measurements
to several additional shapes. All data from this setup are
shown in Table 1. There is no clear pattern of how geometry
affects critical angle, beyond the general observation that
larger shapes support higher angles. Given the scalloped
boundaries of our shapes, which allow some interlocking,
this seems natural.

We also characterize each configuration by its packing
fraction. Figure 3 shows the packing fraction and maximum
angle attained for each avalanche with the small triangles. As
in the earlier work with compacted media in three dimen-
sions [11,12,18], the two properties are positively correlated.
This also agrees with the observation that interlocking and
jamming, which can increase the stability angle, occur more
easily at higher packing fractions [15]. Strikingly, eight of
the ten other shapes exhibit a similar correlation between the
packing fraction and the angle of the ensuing avalanche, with
correlation coefficients between 0.4 and 0.71. (The remain-
ing shapes, the large triangles and large trapezoids, show no
significant correlation between the two.) Thus we confirm
experimentally that a connection between the pile density
and maximum angle of stability exists for a variety of
shapes, although it appears not to be universal.

Even more importantly, our measurements relate these
properties for naturally occurring configurations—those that
result from previous avalanches—rather than merely for ar-
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FIG. 4. (a) Average packing fraction and maximum angle of
stability for the 11 different shapes. Each diamond represents one
shape. Since the 6,, values of Table I are the same angles shown
here, the shape corresponding to each data point can be read from
the table. The line is simply a linear fit used as a guide to the eye.
(b) Different definitions of packing fraction for the agglomerates
also show the negative correlation with stability; see text.

tificially compacted initial arrangements. In this experiment,
we do not actively control the packing fraction, but simply
measure its value in each configuration. Thus the range of
packing fractions in Fig. 3 arises solely from statistical varia-
tion among arrangements of nominally identical preparation
procedures and is much smaller than for earlier work on
compressed piles. That we nonetheless detect an influence of
pile density on stability highlights its importance. The simi-
larity between our results and those on deliberately com-
pacted systems, and in both two and three dimensions, en-
hances the extent of a quite general relationship between
packing fraction and stability. Furthermore, in many practical
situations, grain arrangement is in fact determined from pre-
vious avalanches.

In addition to connecting pile density and stability angle
for the individual avalanches of each shape, we compare the
behavior among shapes. Here a far less intuitive influence of
packing fraction appears. Figure 4(a) again plots packing
fraction against maximum angle, but here each point repre-
sents an average over all avalanches for a single shape. Now
the correlation is actually in the opposite direction from that
of Fig. 3: high packing fractions tend to yield low critical
angles. The identity of the points can be seen in Table I,
since 6, in the table is exactly the angle shown in the graph.
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Note that the standard errors in the angles, as listed in the
table, are of the order of 1°. This is significantly smaller than
the variation among shapes, which covers more than 15°. We
confirmed that the given standard errors are reliable by re-
peating the procedure on several of the shapes: loading them
into the tumbler afresh and recording a new set of ava-
lanches. In each case the standard deviations for the two
trials were comparable. The average angle always differed by
less than twice the standard error and in all but one case by
less than 1.5 times the standard error. Arriving at the repeat-
able procedure we now use took some care; in fact, the non-
reproducibility of some preliminary trials alerted us to the
large effect of broken clusters.

Assessing the uncertainty in the packing fractions is more
complicated. The maximum stability angles of successive
avalanches show no correlation, but the packing fractions do.
No correlation in packing fraction remains after six ava-
lanches though, giving typical standard errors around 0.005.
As for the stability angles, we confirmed the validity of the
standard errors by the repeated runs on several shapes. The
range of packing fractions is over 0.06, even without consid-
ering the extremely low packing fraction of the hexagons, so
again the measured variations are statistically significant.
The data of Fig. 4 would change little if we averaged larger
numbers of avalanches.

The apparently opposite influence of packing fraction
within a shape and across different shapes may be under-
stood by considering how the pile is formed. From our mea-
surements on individual shapes, we know that tightly packed
configurations are more stable. During an avalanche, a nec-
essary condition for flow to cease is a stable instantaneous
arrangement of grains. Furthermore, grain motion always re-
quires expansion so that the particles have room to move
[16]. As an avalanche stops, the packing fraction again in-
creases. Thus the moving grains pass through configurations
with a range of packing fractions. Many of the arrangements
with the lowest packing fractions are unstable or, at least, not
stable enough to absorb the momentum of the moving grains.
As the packing fraction increases, the arrangements are more
likely to be stable and allow the avalanche to stop. If a shape
has a low average packing fraction, its avalanches must stop
relatively early, and the shape is likely to support a wide
range of stable configurations.

Rotation is another means of sampling different grain ar-
rangements, since the stability of any configuration depends
on the direction of gravity. If a particular grain shape allows
more stable arrangements than usual, then the new configu-
rations reached by tilting a heap of such grains are more
likely to be stable. On average the heap will take longer to
reach an unstable configuration and trigger an avalanche.
The negative correlation we observe between packing frac-
tion and maximum angle of stability comes about because
low-density configurations are most likely to occur with
shapes of generally high stability. This logic implies that
particularly high critical angles should be found for tightly
packed grains with a low random loose packing value.

One might wonder whether the observed trend could be
an artifact of our treatment of packing fraction. Figure 5
shows three possibilities for the effective area of a three-ball
triangle. The actual cross section of the balls [case (a)] could
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FIG. 5. Three possibilities for the effective area of a three-ball
triangle, for evaluating packing fractions. (a) Cross section of balls
themselves, used in Fig. 4(a); maximum packing fraction 7/2y3
~0.907 for all shapes. (b) Balls plus interior spaces, used for circles
in Fig. 4(b); maximum packing fraction é+5’rr/12\s“‘3 for these tri-
angles but varies with shape. (c) Balls, interior spaces, and unfill-
able outer spaces, used for squares in Fig. 4(b); maximum packing
fraction 1 for all shapes except single balls.

be augmented by the enclosed empty space [case (b)] or even
by the external space that other grains cannot reach because
of the scalloped edge [case (c)]. The theoretical maximum
packing fraction is 1 for case (c), making it the largest plau-
sible effective area. For case (a), all our shapes have the
same theoretical maximum packing fraction of m/ 243 and
achieve this density for significant patches. This can be seen
even for the hexagons of Fig. 1, and hexagons have by far
the lowest packing fractions of all our shapes. To the extent
that the agglomerates form similar arrangements to indi-
vidual balls, the actual cross section is the best choice of
area, since the internal space would be forbidden even for
single balls. However, the larger agglomerates do support
holes in their configurations comparable in size to their outer
dimensions. If the packings were completely dominated by
such holes, then the small gaps between individual spheres
would become irrelevant and it would be natural to use case
(b) or even case (c) as the effective filled area. In Fig. 4(b)
we show that redefining the effective packing fraction using
cases (b) (circles) or (c) (crosses) does not eliminate the con-
nection to pile stability. The solid lines are again linear fits.
The dashed line is a linear fit to the crosses that omits the
two low-density outliers, single balls and hexagons. The mo-
tivation is that treatment (c) places single balls on a different
footing from the other shapes, with a much lower theoretical
density. We remove the hexagons as well to show that the
correlation does not arise solely from the hexagons’ unusu-
ally low packing fraction.

Yet another effective area calculation has proven useful
for three-dimensional disordered clusters. Fine dry powders
near the jamming threshold agglomerate into clusters [17].
The cluster diameter is nearly independent of the individual
particle size, so agglomerates of the finest powders contain
the most particles. The finest powders also exhibit the lowest
packing fraction at jamming. Interestingly, our system has a
similar behavior, in that the shapes composed of the most
particles also tend to have both low packing fractions and
high maximum angles. When the fine powder agglomerates
are assigned an effective volume by using the radius of gy-
ration to define an equivalent spherical shell, the resulting
effective packing fractions at jamming are independent of
particle size [17]. For our system though, with substantial
order throughout and perfect order within the clusters, the
analogous equivalent hoop calculation makes little sense.
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TABLE II. Correlations among packing fractions before (p;) and
after (py) an avalanche, maximum angle of stability (6,,), angle of
repose (6,), and change in angle during an avalanche (A#). Values
are the averages of the correlation coefficients calculated for all 11
shapes.

Pi 0, Py A6
0, 0.475 -0.269 0.032 0.841
pi -0.105 0.613 0.399
0. 0.290 -0.728
Py -0.138

The effective packing fraction from this treatment has seven
times the variation of the original packing fraction of Fig.
4(a) and exceeds 1 for half the clusters, clear signs that the
model is inappropriate. Indeed, for the limiting case of long
straight clusters in an ordered arrangement, this version of
effective packing fraction becomes infinite. The fundamental
problem—that a hoop poorly approximates elongated
shapes—applies even for our small clusters.

Monitoring successive avalanches allows us to study
other correlations among the configurations as well. Table 11
deals with five variables: packing fraction and angle before
and after each avalanche, and the change in angle. The table
shows the correlation between each pair of quantities, aver-
aged over all 11 shapes. There is no significant correlation
between initial packing fraction and repose angle or between
final packing fraction and maximum angle of stability. We
also find directly that the angles of successive avalanches are
uncorrelated. Previous experiments found a similar lack of
correlation in the size of successive avalanches [18], suggest-
ing that a single avalanche completely resets the system
memory.

On the other hand, the packing fractions of successive
avalanches (or, equivalently, the packing fractions before and
after a single avalanche) are highly correlated. This is hardly
surprising, given that any single avalanche leaves about half
of the ball bearings completely unaffected. In addition to the
stationary regions, there are typically several large clumps
within the pile that rotate slightly during the avalanche but
have no change in their internal arrangements. With this in
mind, the correlation is if anything lower than expected. The
implication is that the density varies more strongly in the top
few layers, which reconfigure completely during an ava-
lanche, than in the rest of the heap.

Combining these observations, we see that significant
packing fraction correlations between consecutive ava-
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lanches arise from the stationary lower layers, but that suc-
cessive avalanches show no correlation in stability angle.
Consequently, the correlation between packing fraction and
maximum angle of stability must depend only on the packing
fraction in the upper, mobile layers. The heap density within
these layers, which we cannot easily calculate, would likely
show a much stronger relationship with the stability angle
than the overall density as in Fig. 3.

Finally, there is a small but consistent negative correlation
between critical angle and repose angle. This may happen
because more momentum builds up during an avalanche that
begins on a steep slope, enabling the avalanche to continue
longer. The one exception is the single balls, which have
positive correlation between critical and repose angles as
well as much weaker connections between avalanche size
and the initial and final angles.

IV. CONCLUSION

We have shown that the packing fraction plays a dual role
in predicting the stability of a two-dimensional heap. For a
given grain shape, denser packings are generally more stable,
and we have extended this result beyond the previous mea-
surements on artificially packed spheres in three dimensions.
However, when comparing different shapes, those with the
lowest packing fractions have the highest maximum stability
angles on average. We also find that only the packing frac-
tion of the top layers of the heap figures strongly in the
stability, so the correlation would likely be much more pro-
nounced if the packing fraction calculation could be confined
to this region. Identifying precisely the portion of a pile in
which the packing fraction influences stability is an interest-
ing direction for further work.

We are also expanding our work to heaps containing a
mixture of grain shapes, which drastically enlarges the phase
space for measurements. In the course of the present work,
we observed that a small fraction of broken shapes can sig-
nificantly change the critical angle. We expect tests of shape
mixtures to help explain why.
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